|国家预印本平台
首页|基于信任和兴趣聚类的协同过滤算法

基于信任和兴趣聚类的协同过滤算法

ollaborative Filtering Recommendation Algorithm Based on Trust and Interest Clustering

中文摘要英文摘要

伴随着Web 2.0技术及各类社交网站的快速发展,社会化网络中的个性化服务受到越来越多的关注。为了提供高质量的社会化网络推荐,本文提出了一种基于信任和兴趣聚类的协同过滤推荐算法。该算法首先综合考虑用户信任度和用户兴趣相似性,利用融合后的相似度对用户进行聚类,然后判断目标用户所属聚类并在其中搜索目标用户的近似邻居,最后根据近似邻居对项目的评分预测未知的项目评分。实验结果表明该算法在一定程度上提高了社会化网络推荐的响应速度和推荐的精度。

With the development of Web 2.0 and kinds of social networking sites, personalized services in social network received more and more attention. In order to provide high quality social recommendation, a collaborative filtering algorithm based on trust and interest clustering is proposed in this paper. Firstly, the algorithm takes synthetieally into account users' trust degree and the similarity of interest and users are clustered based on the composite similarity. Then we find out the nearest neighbours of target user in his cluster and predict the unknown user rates. Finally, experimental results show that the proposed method can obtain more accurate social recommendation as well as improving the real-time performance to some extent.

孟祥武、侯成龙

计算技术、计算机技术

计算机应用社会化网络推荐系统协同过滤

computer applicationsocial networkrecommend systemcollaborative filtering

孟祥武,侯成龙.基于信任和兴趣聚类的协同过滤算法[EB/OL].(2013-12-24)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201312-728.点此复制

评论