|国家预印本平台
首页|基于EMD与K-S检验的语音增强方法

基于EMD与K-S检验的语音增强方法

he Method of Speech Enhancement Based on EMD and K-S Test

中文摘要英文摘要

本文应用Hilbert-Huang变换(HHT)的经验模态分解(EMD),分别对含噪语音信号和参考模型的噪声进行分解得出固有模态函数(IMF),再应用K-S检验方法计算它们之间的相似概率,然后依据相似概率的大小剔除信号中来自噪声的IMF分量,将其余的IMF重构语音信号,从而达到语音信号的增强目的。实验结果表明,与小波变换的语音增强方法相比,该方法能够极大程度地剔除含噪语音中的噪声成分,取得很好的语音增强效果,具有广泛的应用前景。

In the paper, we apply the Empirical Mode Decomposition of Hilbert-Huang Transform (HHT) to decomposing the noise-speech signal and the reference model noise respectively and get the intrinsic mode functions (IMF) of them, follow we sue the K-S test to calculate the similarity probability between the IMFs of noise speech and reference model noise, and then pick out the IMFs that come from the noise of noise-signal based on the similarity probability, so that we can eliminate the noise IMFs of noise-signal and reconstruct the speech signal using the other IMFs ,at last we get the purpose of speech enhancement. The experimentation result show that, compared with the speech enhancement method of wavelet, this method extremely eliminates the noise component of the noise-signal by suing the method and achieves a good speech enhancement effect, it has wide application prospect.

全学海、丁宣浩、蒋英春

电子技术应用

经验模态分解固有模态函数K-S检验相似概率

Empirical Mode DecompositionIntrinsic Mode FunctionK-S testsimilarity probability

全学海,丁宣浩,蒋英春.基于EMD与K-S检验的语音增强方法[EB/OL].(2010-01-11)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/201001-365.点此复制

评论