基于傅里叶变换的注意力机制负载预测模型
Load Prediction Model of Attention Mechanism Based on Fourier Transform
负载预测在云计算中对资源有效管理和优化至关重要,准确的预测有助于确保系统在高负载情况下保持稳定性和性能。尽管负载预测已取得一定进展,但仍有许多研究方向值得探索,如提高预测模型的准确性,研究新型预测方法和技术等。因此,本文提出一种结合傅里叶变换、LSTM和Transformer的负载预测模型,将输入数据转换到频域进行处理,进一步捕捉输入数据的相关信息,减少冗余信息,使得模型能够更加高效地处理输入数据。最后,与其他神经网络预测模型在同一数据集进行对比,本文提出的模型取得了更好的性能和准确性。
Load prediction is crucial for effective management and optimization of resources in cloud computing. Accurate prediction helps ensure the stability and performance of the system under high load conditions. Although load prediction has made some progress, there are still many research directions worth exploring, such as improving the accuracy of prediction models and studying new prediction methods and technologies. Therefore, this paper proposes a load prediction model combining Fourier transform, LSTM, and Transformer, which converts input data into the frequency domain for processing, further captures relevant information of the input data, reduces redundant information, and enables the model to process input data more efficiently. Finally, compared with other neural network prediction models on the same dataset, the proposed model achieves better performance and accuracy.
段鹏瑞、王瑞鹏
计算技术、计算机技术
人工智能负载预测注意力机制神经网络
artificial intelligenceload predictionattention mechanismneural network
段鹏瑞,王瑞鹏.基于傅里叶变换的注意力机制负载预测模型[EB/OL].(2023-12-22)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/202312-55.点此复制
评论