|国家预印本平台
首页|一类带奇异型Trudinger-Moser项的非线性\椭圆方程非负解存在性

一类带奇异型Trudinger-Moser项的非线性\椭圆方程非负解存在性

Existence of non negative solutions for a class of Nonlinear Elliptic Equations with singular Trudinger-Moser terms

中文摘要英文摘要

研究奇异型Trudinger-Moser嵌入[sup_{smallsubstack{uin W_{0}^{1,2}(Omega) \ {| ablau|}_{L^2}leq 1}} int_{Omega} { rac{e^{ lpha{|u|}^{2}}-1}{|x|^{ eta}}}dx=int_{Omega} { rac{e^{ lpha{|v|}^{2}}-1}{|x|^{ eta}}}dx<infty,]其中$u=u(x),{| abla v|}_{L^2}leq 1,v=v(x)inW_0^{1,2}(Omega),Omegasubset R^2$为包含原点的区域,$ lpha>0, etain[0,2)$, $ rac{lpha}{4pi}+ rac{ eta}{2}leq1$.并证明如下结论[limsup_{n ightarrowinfty}int_Omega rac{f(u_n)}{|x|^{ eta}} ightarrow int_Omegarac{f(u)}{|x|^{eta}}=C(b,eta),]其中 $f(u)=g(u)e^{bu^2},g(0)=0,g(t)=-g(-t)>0,t>0$, 对任意的$b>0,eta in[0,2)$有$rac{b}{4pi}+rac{eta}{2}leq 1$成立. 通过使用山路引理证明带奇异型Trudinger-Moser项的非线性方程$- riangle u=rac{f(u)}{{|x|}^{eta}}$的非负解存在性.

Let $Omega$ be a bounded domain in $R^2$containing the origin, we study the singular Trudinger-Moserembedding [sup_{smallsubstack{uin W_{0}^{1,2}(Omega) \ {| ablau|}_{L^2}leq 1}} int_{Omega} { rac{e^{ lpha{|u|}^{2}}-1}{|x|^{ eta}}}dx=int_{Omega} { rac{e^{ lpha{|v|}^{2}}-1}{|x|^{ eta}}}dx<infty,]where $u=u(x),{| abla v|}_{L^2}leq 1,v=v(x)inW_0^{1,2}(Omega), lpha>0, etain[0,2), rac{ lpha}{4pi}+ rac{ eta}{2}leq1.$And the conclusions are as follows:[limsup_{n ightarrowinfty}int_Omega rac{f(u_n)}{|x|^{ eta}} ightarrow int_Omega rac{f(u)}{|x|^{ eta}}=C(b, eta),]where $f(u)=g(u)e^{bu^2},g(0)=0,g(t)=-g(-t)>0,t>0$, $ orall b>0, orall eta in [0,2)$,$ rac{b}{4pi}+ rac{ eta}{2}leq 1$. Theexistence of non negative solutions of nonlinear equation withsingular Trudinger-Moser terms $- riangleu= rac{f(u)}{{|x|}^{ eta}}$ is proved by using the mountain passlemma.

王庚、王非之

数学

非线性椭圆方程非负解存在性奇异型Trudinger-Moser嵌入山路引理

Nonlinear Elliptic EquationsExistence of non negative solutionsSingular Trudinger-Moser embeddingMountain pass lemma

王庚,王非之.一类带奇异型Trudinger-Moser项的非线性\椭圆方程非负解存在性[EB/OL].(2017-03-17)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201703-227.点此复制

评论