导体瞬态电磁散射问题的时域磁场积分方程解法
Effective Solution of Time-Domain Magnetic Field Integral Equation for Transient Electromagnetic Scattering by Conductors
导体的瞬态电磁方程是用时域磁场积分方程来描述的。由于时域磁场积分方程不仅包含于时域混合场积分方程中,而且还作为算子出现在可穿透介质的时域积分方程中,因而它十分重要。传统方法中,求解时域磁场积分方程是在空间域中是用矩量法、在时间域中是用时间步进方法。在本文中,我们采用了一种新的求解方法:在空间域采用Nystr"{o}m 方法,在时间域采用伽略金方法,其中拉盖尔函数作为基函数和测试函数。这种方法充分发挥了Nystr"{o}m方法的处理空间域问题的优点,同时消除了MOT 方法后期不稳定的问题。而且拉盖尔函数可以自然地强加与信号之间的因果关系,伽略金方法可以简化时间域中的问题。我们用一些数值算例来说明我们的方法,这些例子包括典型结构的导体的瞬态电磁散射问题,都得到了很好的结果。
ransient electromagnetic (EM) scattering by conductors is formulated by time-domain magnetic field integral equation (TDMFIE). The TDMFIE is important because the time-domain combined field integral equation involves it and also it appears in the time-domain integral equations of penetrable media as an operator. The TDMFIE is usually solved by combining the method of moments (MoM) in spatial domain and a march-on in time (MOT) scheme in temporal domain. This paper proposes a different approach in which a Nystr"{o}m scheme is used in spatial domain while a Galerkin method (GM) with Laguerre basis and testing functions is employed in temporal domain. The approach includes the merits of Nystr"{o}m scheme in spatial domain and also fully eliminates the late-time instability of the MOT. Moreover, the Laguerre basis function can naturally enforce the causality of signals and the GM can simplify the time-domain implementation. Numerical examples for transient EM scattering by typically-shaped conductors are presented to illustrate the approach and its robustness has been demonstrated.
童美松、张允晶、张杰、万国春
电工基础理论数学物理学
瞬态电磁散射时域磁场积分方程奈斯特龙方法导体
ransient electromagnetic scattering time-domain magnetic field integral equation Nystr"{o}m scheme conductor.
童美松,张允晶,张杰,万国春.导体瞬态电磁散射问题的时域磁场积分方程解法[EB/OL].(2015-12-23)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/201512-1134.点此复制
评论