一类具有Allee效应和Beddington-DeAngelis反应的捕食者-食饵系统的稳定性
Stability of a predator-prey system with Allee effect and Beddington-DeAngelis response
\justifying 捕食者-食饵关系是生态系统中典型的相互作用, 本文主要研究了齐次Neumann边界条件下具有Allee效应和Beddington-DeAngelis反应函数的交错扩散捕食者-食饵模型, 食饵种群的增长受Allee效应影响, Beddington-DeAngelis功能反应函数反映了捕食关系. 本文首先利用比较原理得到正解的有界性, 其次利用线性化方法证明了平衡点的稳定性, 最后通过Leray-Schauder理论讨论了非常数正解存在的条件.
\justifying The predator-prey relationship is a typical interaction in the ecosystem. This paper mainly studies the cross-diffusion predator-prey model with Allee effect and Beddington-DeAngelis response function under homogeneous Neumann boundary conditions. The growth of prey population is affected by Allee effect, and the Beddington-DeAngelis type response function reflects the predator-prey relationship. This paper first uses the comparative principle to obtain the boundedness of the positive solution, secondly uses the linearization method to prove the stability of the equilibrium point, and finally discusses the conditions for the existence of the non-constant steady-state solution by using the Leray-Schauder degree theory.
刘乃伟、李小爽
生物科学研究方法、生物科学研究技术
应用数学捕食者-食饵模型稳态解Leray-Schauder理论
\justifying Applied mathematicsPrey-prey modelSteady state solutionLeray-Schauder degree theory
刘乃伟,李小爽.一类具有Allee效应和Beddington-DeAngelis反应的捕食者-食饵系统的稳定性[EB/OL].(2023-04-27)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202304-355.点此复制
评论