基于Mean Shift算法的安全帽跟踪
Helmet Tracking Based on Mean Shift Algorithm
本文分析了智能视频监控在煤矿企业的重要意义,提出了基于安全帽特征的运动人体目标跟踪策略,并采用基于Mean Shift算法的跟踪算法对选煤厂人员的安全帽进行跟踪定位。论文首先介绍了Mean Shift算法的相关基础知识,然后设计了基于安全帽颜色直方图特征的Mean Shift跟踪算法,并对Mean Shift跟踪算法进行改进使其能够自适应视频中运动目标的变化。最后选取选煤厂视频监控录像,对视频中人员的安全帽进行跟踪实验,实验结果表明Mean Shift算法能够实时稳定的跟踪选煤厂人员的安全帽。
In this paper,the significance of intelligent video monitoring for the coal mining enterprises is analyzed,and tactics of human movement tracking based on feature of safety helmet is proposed. Tracking algorithm to track personnel safety helmets in coal preparation plant base on Mean Shift algorithm is adopted. First,the basics of Mean Shift algorithm is introduced,then,Mean Shift tracking algorithm based on column diagram feature of safety helmet's color is designed.and the Mean Shift algorithm is improved to adaptive the changes of moving objects in video.At last, the tracking experiment of safety helmet of workers in surveillance video of coal preparation plant is did.The experimental results shows that the Mean Shift algorithm can track safety helmets of coal preparation plant workers real-timely and stably.
吴玉康、杜边境、邓世建
选矿矿山安全、矿山劳动保护自动化技术、自动化技术设备
智能视频监控Mean Shift算法安全帽运动跟踪
intelligent video monitoringMean Shift algorithmsafety helmetsmotion tracking
吴玉康,杜边境,邓世建.基于Mean Shift算法的安全帽跟踪[EB/OL].(2011-05-16)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201105-361.点此复制
评论