双选信道下基于图模型的超奈奎斯特信号频域均衡方法
Graphical Model based Frequency Domain Equalization for FTN Signaling in Doubly Selective Channels
随着现代通信技术的发展,移动用户对高品质通信的需求也在逐渐提高。本文提出了双选信道下基于贝叶斯图模型的超奈奎斯特(FTN)信号的频域均衡方法。由于存在相邻频域符号间的干扰,传统的频域最小均方误差(FD-MMSE)均衡器的复杂度很高。为了解决这个问题,可以采用迭代的低复杂度消息传递方法,即基于贝叶斯图模型的置信传播来检测FTN符号。相比于低复杂度的变分推理方法,本文所提方法考虑了符号之间的条件相关特性,从而提高了算法的性能。仿真结果表明,本文所提出的均衡方法可以达到与MMSE均衡器相似的性能,并优于变分推理方法。
Modern mobile communication applications raise the requirement of high quality support for high mobility users. In this paper, we present a Bayesian graphical model based frequency domain equalization method for faster-than-Nyquist (FTN) signaling in doubly selective channels.The conventional frequency domain minimum mean squared error (FD-MMSE) equalizer suffers high complexity due to the interferences induced by adjacent frequency symbols. To tackle this problem,a low complexity iterative message passing method namely,belief propagation is employed on the Bayesian graphical model to detect the FTN symbols. Compared to the low complexity variational inference method, the proposed algorithm considers the conditional dependencies between symbols and therefore can improve the performance. Simulation results show that the proposed equalization method has similar performance of the MMSE equalizer and outperforms the variational inference method.
亓晓彤、袁伟杰、武楠
通信无线通信
通信超奈奎斯特信号频域均衡贝叶斯图模型置信传播
communication Faster-than-Nyquist signaling frequency domain equalization Bayesian graphical model belief propagation
亓晓彤,袁伟杰,武楠.双选信道下基于图模型的超奈奎斯特信号频域均衡方法[EB/OL].(2016-06-06)[2025-08-17].http://www.paper.edu.cn/releasepaper/content/201606-327.点此复制
评论