基于Gabor小波和CNN的图像失真类型判定算法
针对图像失真分类问题,提出了一种基于Gabor小波和CNN(convolutional neural network,卷积神经网络)的失真类型判定新算法。该算法先利用Gabor小波的良好特性对图像进行特征粗提取,再通过改进的CNN进一步提取关键特征。算法步骤包括:首先对图像进行预处理(包括标签设定、样本均衡和样本扩充);然后对预处理后的图像进行8方向的Gabor小波变换,并将不同方向的子带叠加构成输入样本;最后通过自行设计的CNN和Softmax分类器对样本进行训练,训练的过程中采用随机梯度下降和反向误差传播的方法对卷积核参数进行优化得到最终模型。利用训练好的模型进行失真类型判定实验,在LIVE标准图像库上分类正确率达到95.62%,表明本算法具有较高的准确性和鲁棒性。
For image distortion classification, this paper proposes an algorithm based on Gabor wavelet and CNN (Convolutional Neural Network) . It uses the good characteristic of Gabor wavelet to extract rough feature of images firstly, and then uses the improved CNN to extract the key feature from rough feature. The main steps include: Images are preprocessed firstly (including labels setting, samples balance and samples expansion) ; Then it calculates eight directions Gabor wavelet to preprocessed images, and then add eight sub-bands to one sample for training; Finally, it uses a self-designed CNN and Softmax classifier to train the final model, and uses the methods of random gradient descent and error back propagation to optimize the parameters of convolution kernels during training. The final model is used to determine the type of image distortion, the classification accuracy on the LIVE standard image library is 95.62%, it shows that the proposed method has high accuracy and robustness.
李鹏程、张善卿、吴涛
电子技术应用
卷积神经网络Gabor小波失真类型特征学习
李鹏程,张善卿,吴涛.基于Gabor小波和CNN的图像失真类型判定算法[EB/OL].(2018-06-19)[2025-08-11].https://chinaxiv.org/abs/201806.00094.点此复制
评论