|国家预印本平台
首页|从不显著结果中提取信息的方法:原理及其实现

从不显著结果中提取信息的方法:原理及其实现

Interpreting Non-Significant Results: A Chinese Tutorial

中文摘要英文摘要

在实证研究中,研究者有时需要证实当前的数据支持零假设,即没有差异或者没有效应。在零假设显著性检验(Null hypothesis significance test, NHST)框架之下,p > .05的结果(即不显著结果,non-significant results)却无法区分以下两种情况:“有证据表明没有效应(evidence of absence)”和“没有证据表明有效应(absence of evidence)”。然而,研究者经常将p > .05错误地解读为“有证据表明没有效应”,即“支持零假设”。近年来,研究者开始使用等价性检验、贝叶斯估计和贝叶斯因子来从不显著结果中提取有意义的信息,区分以上两种情况。在频率统计框架下,等价性检验通过检验效应是否在最小感兴趣效应的范围内,提供支持零效应的证据;在贝叶斯统计框架下,贝叶斯估计通过对比后验分布的最高密度区间和实际等价区的重叠情况,提供支持或拒绝零效应的证据;而贝叶斯因子则是通过计算当前数据支持零效应和有效应的相对程度,得到贝叶斯因子,进而评估相对于备择假设,当前数据支持零假设的程度。其中,等价性检验和贝叶斯估计中的最小感兴趣效应区间和实际等价区一般通过理论或者以往研究的数据来确定。文章通过分析同一个实例,分别展示了等价性检验、贝叶斯估计和贝叶斯因子如何应用,以及如何确定最小感兴趣效应区间和实际等价区。正确解读不显著结果有利于充分地从数据中提取信息,促进实证研究中证据的累积。

In empirical studies, researchers need to prove that the null hypothesis is true. Unfortunately, non-significant results, when p > .05, cannot distinguish the absence of evidence from the evidence of absence. Even though, p > .05 was always mistakenly interpreted as the evidence of absence. To address this issue, researchers have begun employing equivalence test, Bayesian estimation, and Bayes factor to draw more informative conclusions from non-significant result. Specifically, equivalence test enables us to evaluate the null effect by testing whether the detected effect match the smallest effect size of interest (SESOI). Likewise, the Bayes estimation help us to accept or refuse null effect by estimating the overlap between highest density intervals (HDI) of posterior distribution and region of practical equivalence (ROPE). Also, Bayes factor enable us to assess the relative strength of evidence for null hypothesis and alternative hypothesis. Using equivalence test or Bayesian estimate to make inference requires researcher to define a SESOI or ROPE beforehand, and the SESOI or ROPE are usually based on theories or data from previous studies. In this Chinese tutorial, we explained how equivalence test and Bayesian estimate work and illustrated how to apply equivalence test, Bayesian estimate and Bayes factor through a worked example. By doing so, we hope that Chinese researchers can apply those statistical techniques to interpret non-significant results in a better way, and therefore promote the accumulation of empirical knowledge."

许岳培、贾彬彬、宋琼雅、胡传鹏、王珺、陆春雷

10.12074/202001.00113V2

科学、科学研究

零效应p值等价检验贝叶斯估计贝叶斯因子

Null effectp valueEquivalence testBayesian estimationBayes factor

许岳培,贾彬彬,宋琼雅,胡传鹏,王珺,陆春雷.从不显著结果中提取信息的方法:原理及其实现[EB/OL].(2020-01-15)[2025-08-16].https://chinaxiv.org/abs/202001.00113.点此复制

评论