|国家预印本平台
首页|一种基于联邦学习的时空图卷积神经网络协同训练算法

一种基于联邦学习的时空图卷积神经网络协同训练算法

Collaborative Training Algorithm For STGCN Based On Federated Learning

中文摘要英文摘要

随着大数据、智慧交通等行业的快速发展,网约车、出租车已经成为了人们普遍使用的出行方式。因此,各公司产生了大量的出租车订单数据。出租车订单数据的预测问题有着重要的现实意义,针对该问题,许多研究者已经提出了相关的深度学习模型和算法。然而,现有的模型和算法仍存在一些不足之处。首先,出租车订单数据有着极高的隐私性和商业价值,各公司间无法通过数据分享来训练得到更好的模型,形成了"数据孤岛"的难题;其次,现有的时空图卷积神经网络模型中,其图结构的构建过程未对数据本身进行隐私保护。本文基于时空图卷积神经网络,对出租车订单需求预测的问题进行建模,并基于联邦学习技术,针对时空图卷积神经网络提出一种保护数据隐私安全的协同训练算法。实验结果表明,本文提出的算法能够让各参与方在不透露本地数据的基础上,协同训练得到误差更低的模型。

With the rapid development of industries such as big data and intelligent transportation, ride-hailing and taxis have become common modes of transportation for people. As a result, companies have generated a large amount of taxi order data. The prediction of taxi order data has important practical significance. In response to this problem, many researchers have proposed relevant deep learning models and algorithms. However, there are still some shortcomings in existing models and algorithms. First, taxi order data has extremely high privacy and commercial value. Companies cannot train better models through data sharing between them, resulting in the problem of \'data islands\'. Secondly, in existing spatio-temporal graph convolutional neural network models, the construction process of the graph structure does not protect the privacy of the data itself. This paper models the problem of predicting taxi order demand and proposes a collaborative training algorithm based on federated learning that protects data privacy and securityfor spatio-temporal graph convolutional neural networks. Experimental results show that the algorithm proposed in this paper can enable participating parties to collaboratively train models with lower errors without revealing local data.

邢凯、张淼

交通运输经济计算技术、计算机技术自动化技术、自动化技术设备

数据安全联邦学习时空图卷积神经网络

ata SecurityFederated LearningSpatial Temporal Graph Convolutional Network

邢凯,张淼.一种基于联邦学习的时空图卷积神经网络协同训练算法[EB/OL].(2023-03-27)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202303-288.点此复制

评论