|国家预印本平台
首页|分段光滑图像变分分割的Split-Bregman迭代方法

分段光滑图像变分分割的Split-Bregman迭代方法

Split-Bregman Iterative Method for Variational Segmentation of Piecewise Smooth Images

中文摘要英文摘要

变分水平集方法已经成为图像分割的经典方法,但该类方法的传统模型是局部最优的,且计算效率低。本文首先将分段光滑图像分割的传统的变分水平集模型——Chan-Vese模型转化为全局凸分割模型(GCS: Globally Convex Segmentation),避免了水平集函数的初始化对分割结果的影响,然后采用Split-Bregman迭代方法将全局凸分割模型转化为通过简单的软阈值公式和Laplacian计算实现的两个交替优化过程,大大提高了计算效率。文末通过数值实验对所提出方法的有效性进行了验证。

he classical variational level set methods for image segmentation have two demerits of local minimization and low efficiency. The famous variational level set model-Chan-Vese mode for piecewise smooth image segmentation is transformed to a global convex segmentation one to avoid the initialization of level set functions on the results of segmentation, then, the Split-Bregman iteration method is used to implement the minimization process through simple and fast soft threshold formulas and Laplacian computation based on two alternative subproblems of minimization. Numerical examples validate the algorithm presented in this paper.

潘振宽、张娜、魏伟波

计算技术、计算机技术

图像分割全局凸分割模型变分水平集方法Split-Bregman方法

image segmentationGlobally Convex SegmentationVariational level set methodSplit-Bregman method

潘振宽,张娜,魏伟波.分段光滑图像变分分割的Split-Bregman迭代方法[EB/OL].(2009-09-16)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/200909-422.点此复制

评论