四色猜想的数学证明(1):转换步
Mathematical proof of the four-color conjecture(1):Transformation step
四色猜想已困惑数学家170多年,至今尚无纯数学证明方法。本系列文章给出四色猜想的纯数学证明,由转换步和破圈步两篇组成。转换步通过两种创新工具,扩缩运算和二色不变圈,将四色猜想的证明转换为4-基本模块的破圈问题;破圈步通过另外两种创新工具,色连通势和口袋运算,解决了4-基本模块的破圈问题。本文给出转换步的证明。
he four-color conjecture has puzzled mathematicians for over 170 years and has yet to be proven by purely mathematical methods. This series of articles provides a purely mathematical proof of the four-color conjecture, consisting of two parts: the transformation step and the decycle step. The transformation step uses two innovative tools, contracting and extending operations and unchanged bichromatic cycles, to transform the proof of the four-color conjecture into the decycle problem of 4-basic modules. Moreover, the decycle step solves the decycle problem of 4-basic modules using two other innovative tools: the color-connected potential and the pocket operations. This article presents the proof of the transformation step.
许进
数学
四色猜想2-色不变圈极大平面图扩缩运算4-基本模块破圈着色色连通势不变量口袋运算
Four-color conjectureUnchanged bichromatic cycle maximal planar graphsContracting and extending operations4-base-modulesDecycle coloringsColor-connected potential invariantPocketopetion
许进.四色猜想的数学证明(1):转换步[EB/OL].(2024-02-27)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202402-80.点此复制
评论