|国家预印本平台
首页|基于滑动窗口模型的非典型突发事件数据去噪算法研究

基于滑动窗口模型的非典型突发事件数据去噪算法研究

Research of a De-noising Algorithm Based on the Sliding Window

中文摘要英文摘要

目前,伴随着电信新业务的推广,在投诉文本中出现了这样一类概率小、突发性强的非典型事件。根据传统的数据挖掘算法不能对其进行合适的处理。本文针对当前情况,提出了一种基于滑动窗口模型的去噪算法。首先从非典型突发事件基本概念出发,定义了什么是噪声数据,然后利用FP-tree算法去除噪声数据,接着利用多相关关联规则处理噪声数据中的奇异值,以保证数据的正确性和合理性,并通过电信投诉数据进行算法的可行性验证。实验表明,采用此算法,可以实现对这类非典型性突发事件的去噪处理。

s the continuous growth of the telecom service and customer demands, top-quality and efficient service increases in importance. One of its challenging issues is to deal with the atypical incidents. While the traditional mining algorithms are focus on the high-frequent item sets, a de-noising algorithm related to the atypical incidents still remains unsettled. This paper proposed a de-noising model based on the sliding window. In this model, FP-tree and multi-association rules are introduced to fix the up-threshold of the sliding window. In addition, the certain rules are defined to fix the down-threshold. Then the thresholds are adjusted by the feedback of the algorithm's output, that means expanding or narrowing the sliding window until the optimum state. Experimental results demonstrate that the proposed algorithm can apply an appropriate data set to the knowledge discovery of the atypical incidents.

杨文川、宋迎花

通信

数据处理非典型突发事件噪声数据FP-tree算法多相关关联规则

data miningatypical incidentsliding window modelFP-treemulti-association rules

杨文川,宋迎花.基于滑动窗口模型的非典型突发事件数据去噪算法研究[EB/OL].(2011-12-27)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201112-771.点此复制

评论