|国家预印本平台
首页|基于高阶精度紧致差分法求解非线性Black-Scholes方程

基于高阶精度紧致差分法求解非线性Black-Scholes方程

Based on high-order accuracy compact finite difference method for solving nonlinear Black - Scholes equation

中文摘要英文摘要

在过去二十年里,由于考虑到更现实的假设,如交易成本,投资资产组合的风险,大型投资者的偏好或流动性市场(这可能会影响到股票价格)的波动率,漂移率和期权本身的价格,使得非线性的Black - Scholes方程期权定价的研究逐步深入。 在本文中,我们利用高阶精度紧致差分法把考虑交易成本的非线性的Black - Scholes方程半离散化并给出数值结果,然后把所得到的数值结果与标准的差分方法所得到的结果进行对比。结果表明,这种紧致差分法具有令人非常满意的稳定性和非振动性,而且比经典的差分法更有效。

In the past two decades, due to taking into account more realistic assumptions, such as transaction costs, portfolio risk, large investors liquidity preferences or the market (which may affect the stock price) volatility, drift rates and options their prices, making the nonlinear Black - Scholes equation of option pricing research gradually deepened. A nonlinear Black-Scholes equation which models transaction costs arising in the hedging of portfolios is discretized implicitly using high order compact finite difference schemes。The numerical results are compact schemes have very satisfying stability and non-oscillatory properties and are generally more efficient than the considered classical schemes.

张兴永、邢晓芳、项树林、孙成同

数学财政、金融

非线性Black-Scholes方程欧式期权交易费用高阶精度紧致差分

Nonlinear Black-Scholes equationEuropean optionsransaction costshigh order compact finite difference schemes

张兴永,邢晓芳,项树林,孙成同.基于高阶精度紧致差分法求解非线性Black-Scholes方程[EB/OL].(2009-09-11)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200909-344.点此复制

评论