二维粘性浅水波系统在~Besov 空间中的~Cauchy 问题
fLarge On the Cauchy problem of 2D viscous shallow water system in Besov spaces
本文考虑二维粘性浅水波系统在Besov空间~$B^s_{p,r}(mathbb{R}^2) (s>1+ rac{2}{p})$ 中的Cauchy 问题。应用Littlewood-Paley理论,Bony分解理论,以及输运方程和输运扩散方程的Besov空间理论,我们首先证明该系统在~$B^s_{p,r}(mathbb{R}^2) (s>1+ rac{2}{p})$ 中的局部适定性。然后我们给出了该系统的解在~$B^s_{p,r}(mathbb{R}^2) (s>1+ rac{2}{p})$ 中的一个爆破准则。进而,利用该爆破准则,我们证明了该系统在 $B^s_{p,r}(mathbb{R}^2)$ ($s>1+ rac{2}{p}, pleq2)$ 中的小初值解的整体存在性。所得结果是对文献cite{W} 结果的一个推广。
In this paper we consider the Cauchy problem for 2D viscous shallow water system in Besov spaces. We firstly prove the local well-posedness of this problem in $B^s_{p,r}(mathbb{R}^2)$, $s> rac{2}{p}+1$ by using the Littlewood-Paley theory, the Bony decomposition and the theories of transport equations and transport diffusion equations. Then we give a blow-up criterion of solutions to the system in $B^s_{p,r}$, $s> rac{2}{p}+1$. Moreover, by this blow-up criterion, we can prove the global existence of the system with small enough initial data in $B^s_{p,r}(mathbb{R}^2)$, $pleq2$ and $s>1+ rac{2}{p}$. Our obtained results generalize and cover the recent results in cite{W}.
殷朝阳、刘亚楠
数学力学
粘性浅水波系统Littlewood-Paley 理论Besov 空间爆破准则整体存在性.
Viscous shallow water systemLittlewood-Paley theoryBesov spacesBlow up criterionGlobal existence.
殷朝阳,刘亚楠.二维粘性浅水波系统在~Besov 空间中的~Cauchy 问题[EB/OL].(2014-06-04)[2025-06-29].http://www.paper.edu.cn/releasepaper/content/201406-62.点此复制
评论