|国家预印本平台
首页|基于AGA与GCV准则的小波阈值图像去噪研究

基于AGA与GCV准则的小波阈值图像去噪研究

Wavelet Image Threshold Denoising Based on Adaptive Genetic Algorithm and Generalized Cross Validation

中文摘要英文摘要

本文提出了一种基于AGA(自适应遗传算法)的小波阈值图像去噪研究方法。分别针对高斯噪声和非高斯噪声,在不需要估计噪声能量的情况下,采用GCV准则构造目标函数,用改进的自适应遗传算法求解多尺度小波分解每层系数的最优阈值,通过软阈值法对小波系数处理后进行小波重构。实验结果表明,利用这种方法进行图像去噪是可行的,并且能够达到较高的信噪比,算法的运行速度快,可较好的保留图像的细节信息。

n image denoising algorithm based on wavelet transform and adaptive genetic algorithm is proposed. Aiming at counteracting the Gaussian noise and non-Gaussian noise, GCV is applied to constructed objective function without the estimation of noise power. Then based on adaptive genetic algorithm, every scale best thresholds are solved after decomposed by multiscale wavelet transform. Reconstructed signal is obtained by using the inverse wavelet transform after all coefficients are dealt with soft threshold method. Experimental results show that the algorithm is effective and can obtain optimal signal-to-noise ration . The algorithm can be performed fast, and detail information of the image can be preserved well.

李万臣、邵斓

电子技术应用计算技术、计算机技术自动化技术、自动化技术设备

自适应遗传算法GCV准则交叉概率变异概率小波阈值去噪

adaptive genetic algorithmcrossover probabilitymutation probabilitywavelet threshold denoisingGeneralized Cross Validation

李万臣,邵斓.基于AGA与GCV准则的小波阈值图像去噪研究[EB/OL].(2008-06-24)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200806-568.点此复制

评论