化学计量学中非负单位约束的张量分解算法
ensor Decomposition Problem With Nonnegative Unit Constraint in Chemometrics
本文针对化学计量学中含有未知干扰的感兴趣目标物质测量问题,提出带非负单位约束的张量CP分解模型,建立了邻近Gauss-Seidel迭代算法,将原问题分解为多个子问题,并应用广义多项式方程和不动点迭代求解子问题,建立了收敛性理论,最后对算法进行数值实验,验证了所提出模型和算法的有效性。
In this paper, a tensor CP decomposition model with nonnegative unit constraint is proposed for the measurement of target matter of interest with unknown interference in chemometrics. The proximal Gauss Seidel iterative algorithm is established to decompose the original problem into several subproblems. The generalized polynomial equation and fixed point iteration are applied to solve the subproblems. The convergence theory is established. Finally, the algorithm is numerically simulated and experiments show the effectiveness of the proposed model and algorithm.
白敏茹、王一凡
化学
P 分解邻近Gauss-Seidel迭代不动点迭代
CP decompositionproximal~Gauss-Seidel~iterationfixed ~point~ iteration
白敏茹,王一凡.化学计量学中非负单位约束的张量分解算法[EB/OL].(2021-04-13)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202104-105.点此复制
评论