Tannaka-Krein duality for finite 2-groups
Tannaka-Krein duality for finite 2-groups
Let $\mathcal{G}$ be a finite 2-group. We show that the 2-category $2\mathrm{Rep}(\mathcal{G})$ of finite semisimple 2-representations is a symmetric fusion 2-category. We also relate the auto-equivalence 2-group of the symmetric monoidal forgetful 2-functor $Ï: 2\mathrm{Rep}(\mathcal{G}) \to 2\mathrm{Vec}$ to the auto-equivalence 2-group of the regular algebra and show that they are equivalent to $\mathcal{G}$. This result categorifies the usual Tannaka-Krein duality for finite groups.
Zhi-Hao Zhang、Mo Huang
数学
Zhi-Hao Zhang,Mo Huang.Tannaka-Krein duality for finite 2-groups[EB/OL].(2025-07-21)[2025-08-25].https://arxiv.org/abs/2305.18151.点此复制
评论