|国家预印本平台
首页|On a certain subclass of strongly starlike functions

On a certain subclass of strongly starlike functions

On a certain subclass of strongly starlike functions

来源:Arxiv_logoArxiv
英文摘要

Let $\mathcal{S}^*(α_1,α_2)$, where $ α_1, α_2 \in (0,1]$, represent the class of functions $f$ that are analytic in the open unit disk $\mathbb{D}$, normalized by $f(0) = f'(0) - 1=0$, and satisfying the following double-sided inequality: \begin{equation*} -\frac{πα_1}{2}< \arg\left\{\frac{zf'(z)}{f(z)}\right\} <\frac{πα_2}{2}, \quad (z\in\mathbb{D}). \end{equation*} In this manuscript, we estimate the coefficients and logarithmic coefficients associated with functions that belong to the class $\mathcal{S}^*(α_1,α_2)$. As a result, we provide a general bound for the coefficients of a strongly starlike function, which has been an open question until now. Finally, we derive upper and lower bounds for the expression ${\rm Re}\{zf'(z)/f(z)\}$, where $f\in \mathcal{S}^*(α_1,α_2)$.

R. Kargar、J. Sokół、H. Mahzoon

数学

R. Kargar,J. Sokół,H. Mahzoon.On a certain subclass of strongly starlike functions[EB/OL].(2025-07-16)[2025-08-10].https://arxiv.org/abs/1811.01271.点此复制

评论