|国家预印本平台
首页|一种基于广义Armijo线搜索技术的快速神经网络共轭梯度算法模型

一种基于广义Armijo线搜索技术的快速神经网络共轭梯度算法模型

novel conjugate gradient method with generalized Armijo search for efficient training of feedforward neural networks

中文摘要英文摘要

在实际应用中,共轭梯度算法(CG)不要求大量内存空间,具有收敛速度快的特点。针对三层BP神经网络,本文提出了一种新的基于广义Armijo搜索的共轭梯度算法。通过运用一种新的技巧,本文在理论上证明了这种学习算法的确定性收敛性,包括强收敛和弱收敛性质。误差函数趋于零表明了其弱收敛性,强收敛性暗示着权值序列趋于某个不动点。此外,对比已有文献,本文中此算法的确定性收敛性的限制条件大大放松。为验证其理论结果,本文进行了数值试验。

onjugate gradient method (CG) requires low memory and performs fast convergent behaviors in practical applications. A novel conjugate gradient method with generalized Armijo search is proposed for three-layer BP neural networks (BPNNs) in this paper. Theoretically, the proof of the deterministic convergent properties, which include weak and strong convergence, for this learning method is given by employing a novel technique. The gradient of error function tends to zero which results in the weak convergent behavior. For the so-called strong convergence, it represents that the sequence with respect to weights tends to a fixed point. Additionally, compared with the existing literature, the restrictive assumptions of the deterministic convergence are more relaxed. For checking the theoretical results, this paper gives some numerical experiments.

郝文学、孙占全、孙清滢、王健、张炳杰

计算技术、计算机技术

前馈神经网络反向传播确定性收敛性共轭梯度算法广义Armijo搜索

feedforward neural networks backpropagation deterministic convergence conjugate gradient method generalized Armijo search

郝文学,孙占全,孙清滢,王健,张炳杰.一种基于广义Armijo线搜索技术的快速神经网络共轭梯度算法模型[EB/OL].(2017-05-13)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201705-901.点此复制

评论