|国家预印本平台
首页|豪斯道夫微积分和分数阶微积分模型的分形分析

豪斯道夫微积分和分数阶微积分模型的分形分析

Fractal analysis of Hausdorff calculus and fractional calculus models

中文摘要英文摘要

本文清晰地解读了豪斯道夫微积分和分数阶微积分阶数的分形维意义,并比较了这两种微积分建模方法的区别与联系。这是首次清晰地定量地导出分数阶微积分的分形几何基础。我们也提供了豪斯道夫导数模型描述历史依赖过程的几何解释,即初始时刻依赖性问题,并与分数阶导数模型做了对比研究。基于本文作者的早期工作,本文详细描述了非欧几里得距离的豪斯道夫分形距离定义,豪斯道夫导数扩散方程的基本解就是基于该豪斯道夫分形距离。该基本解实质上就是目前广泛使用的伸展高斯分布和伸展指数衰减统计模型。

his study clearly interprets the order of the Hausdorff derivative and fractional calculus from the fractal dimensionality and distinguishes the relationship and difference between these two calculus modeling approaches. This is the first time that the fractal geometry foundation of fractional calculus is quantitively clarified. We also provides the geometric interpretation of the Hausdorff derivative model's description of history-dependency process, namely, its dependency on initial time, in a direct comparison with the fractional derivative model. Based on the author's early work, this paper provides the detailed definition of the fractal distance, a non-Euclidean metric. The fundamental solution of the Huasdorff derivative diffusion equation is based on this fractal distance underlying popular statistical models of the stretched Gaussian distribution and the stretched exponential decay.

陈文

数学

豪斯道夫导数豪斯道夫微积分分数阶微积分非欧几里得距离分形距离豪斯道夫距离基本解

Hausdorff derivativeHausdorff calculusfractional calculusnon-Euclidean metricfractal distanceHausdorff distancefundamental solution

陈文.豪斯道夫微积分和分数阶微积分模型的分形分析[EB/OL].(2017-05-18)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201705-1162.点此复制

评论