|国家预印本平台
首页|利用物理信息神经网络预测基于复PT对称势的孤子动力学

利用物理信息神经网络预测基于复PT对称势的孤子动力学

Physics-informed Neural Network method for predicting soliton dynamics supported by complex PT-symmetric potentials

中文摘要英文摘要

利用被称作物理信息神经网络的深度学习技术,用于在所考虑的复PT对称势下近似非线性薛定谔方程,并近似球的多种孤子解。首次采用以物理信息为基础的神经网络来计算所研究的非线性偏微分方程的解,并生成六种不同类型的孤子解,即基本孤子、偶孤子、三极孤子、四极孤子、五极孤子和六极孤子。同时,在预测的和实际的孤子解之间进行比较,看看深度学习是否有能力求之前描述的偏微分方程的近似解。可以通过评估预测结果和数值结果之间的平方误差来评估物理信息神经网络是否能够有效地提供近似的孤子解。此外,还仔细研究了不同的激活机制和网络结构如何影响所选择的神经网络的性能。通过研究结果可以证明,所建立的神经网络模型可以用来准确有效地近似所考虑的非线性薛定谔方程,并预测孤子解的动力学行为。

We examine the deep learning technique referred to as the physics-informed neural network method for approximating nonlinear Schr?dinger equation under considered parity time symmetric potentials and obtaining multifarious soliton solutions. For the first time, neural networks founded principally physical information are adopted to figure out the solution the examined nonlinear partial differential equation and generate six different types of soliton solutions, which are basic, dipole, tripole, quadruple, pentapole and sextupole solitons we consider. We make comparisons between the predicted and actual soliton solutions to see whether deep learning is capable of seeking the solution the partial differential equation described before. We may assess whether physics-informed neural network is capable of effectively providing approximate soliton solutions through the evaluation of squared error between the predicted and numerical results. Besides, we also scrutinize how different activation mechanisms and network architectures impact the capability of selected deep learning technique works.Through the findings we can prove that the neural networks model we established can be utilized to accurately and effectively approximate nonlinear Schr?dinger equation under consideration and predict the dynamics of soliton solution.

张之阳、刘文军、刘希萌

物理学计算技术、计算机技术

光学物理信息神经网络孤子PT对称势非线性薛定谔方程

OpticsPINNSolitonPT-symmetricNLSE

张之阳,刘文军,刘希萌.利用物理信息神经网络预测基于复PT对称势的孤子动力学[EB/OL].(2023-05-16)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202305-85.点此复制

评论