1+1维Wolf-Villain模型跨度极值统计的数值模拟
Numerical Simulation on Extreme Value Statistics of the Persistence in (1+1)-Dimensional Wolf-Villain Mode
本文采用Kinetic Monte-Carlo方法对1+1维Wolf-Villain (WV)模型跨度的极值统计进行了大量的数值模拟研究。在模拟过程中,计算了它的平均值、方差以及概率分布关系。结果表明,1+1维WV模型的跨度极值分布具有较好的数据塌缩现象,并且其统计平均与方差随系统尺寸均呈现出较好的线性关系。
he statistical behavior of the persistence in (1+1)-dimensional Wolf-Villain model is simulated extensively using Kinetic Monte-Carlo method in the paper. In the simulation processes, the average, variance and probability of the maximal persistence are calculated. The results suggest that the exteme value statistics of the persistence in (1+1)-dimensional Wolf-Villain model exhibits fine data collapse, and the statistical average and variance both have a good linear relationship with the system size.
寻之朋、温荣吉
物理学
Wolf-Villain模型极值统计跨度
Wolf-Villain modelextreme value statisticspersistence
寻之朋,温荣吉.1+1维Wolf-Villain模型跨度极值统计的数值模拟[EB/OL].(2011-05-13)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/201105-320.点此复制
评论