|国家预印本平台
首页|基于持续增量模型的低速端口扫描检测算法

基于持续增量模型的低速端口扫描检测算法

中文摘要英文摘要

端口扫描是一种常见的有效入侵技术,用于搜索易受攻击的Internet主机和端口。快速端口扫描的检测技术已经成熟,但是隐蔽的低速端口扫描检测效果有待提升。针对低速端口扫描进行了研究,根据低速扫描的时间持续性和特征分散性,提出了一种基于持续增量模型的低速端口扫描检测算法,结合条件熵对特征分布的评估达到检测目的。实验结果表明算法的检测率能达到99.78%,且误报率为7%。算法适用于多种复杂网络环境,且不需要网络先验知识,检测率对阈值的精确性要求低,能够有效检测到低速端口扫描行为。

Port scanning is a common and effective intrusion technique for searching vulnerable Internet hosts and ports. The detection technology of fast port scanning has matured, but the hidden low-speed port scanning detection effect needs to be improved. This paper studies low-speed port scanning. According to the time persistence and feature dispersion of low-speed scanning, a low-speed port scanning detection algorithm based on continuous incremental model is proposed. The conditional entropy is used to evaluate the feature distribution. The experimental results show that the detection rate of the algorithm can reach 99.78%, and the false positive rate is 7%. The algorithm is applicable to a variety of complex network environments, and does not require network prior knowledge. The detection rate has low accuracy on the threshold, and can effectively detect low-speed port scanning behavior.

刘海波、薛少勃、沈晶

10.12074/201901.00198V1

电子技术应用通信电子对抗

低速端口扫描持续增量模型信息熵异常检测

刘海波,薛少勃,沈晶.基于持续增量模型的低速端口扫描检测算法[EB/OL].(2019-01-28)[2025-08-02].https://chinaxiv.org/abs/201901.00198.点此复制

评论