基于自适应聚类算法的小群体检测与跟踪
daptive Clustering Algorithm based small Group Detection and Tracking
视频中的小群体检测是计算机视觉领域的备受关注的部分。小群体是由多个个体共同运动形成,本文提出了一种检测和跟踪小群体的方法。随着个体的分裂和合并,小群体的结构进行着动态变化。为了应对这些挑战,提出了自适应聚类发现小群体的方法(AGD)。在真实数据集FM dataset上,实验结果表明提出的基于轨迹相似性的方法能够动态的发现小群体结构的变化。通过与传统的方法作对比,提出的算法具有更好的运行效率和准确度。
We propose to detect and track small groups of individuals who are traveling together in surveiuance videos. Coherent groups are dynamically updated through merge and split events. To handle these challenges, we propose to discover groups by adaptive clustering (AGD). Experiments on challenging videos (FM dataset) which have complex motions and occlusions show that the proposed method based on trajectory-level similarity can correctly discover dynamic changes of groups. The effectiveness of the proposed approach is shown through comparison with classical methods.
田媚、邹琪、程钟斌
计算技术、计算机技术
计算机软件与理论小群体数据关联相似性度量聚类自适应
Small groupData AssociationSimilarity measureclusteringadaptive
田媚,邹琪,程钟斌.基于自适应聚类算法的小群体检测与跟踪[EB/OL].(2016-09-09)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201609-61.点此复制
评论