|国家预印本平台
首页|基于类别的鲁棒空气监测传感器校准方法

基于类别的鲁棒空气监测传感器校准方法

Category-Based Calibration Approach with Fault Tolerance for Air Monitoring Sensors

中文摘要英文摘要

近年来, 由于环境的恶化, 空气污染监测引起了广泛关注。 政府建立了许多标准站点来监测空气污染物的浓度变化。虽然这些标准站可以提供准确的污染物浓度数据,但是由于成本高昂,难以实现密集化布点。因此,大量低成本、便携式的空气监控传感器得到了广泛的应用,但是它们的精度往往较低。本论文使用机器学习算法,构建基于类别的传感器校准方法(CCA)。 传统校准模型使用单一回归模型,CCA根据污染物的浓度类别建立多个回归模型,以构建从传感器读数到参考读数的更准确的映射。此外,CCA引入了两个容错模块:分类容错和样本容错。前者减轻了分类模型错分的影响,后者提高了每个回归模型的鲁棒性。我们的方法对来自中国两个城市的一氧化碳(CO)和臭氧(O$_3$)进行了评估。实验结果表明,CCA比传统校准模型具有更好的准确性和鲁棒性。

ir pollution monitoring has attracted much attention in recent years because of the deterioration of the environment. Standard stations, installed by governments with a high cost, can provide reliable air quality information; whereas a large number of portable air monitoring sensors with low cost are widely used and output less precise results.In this paper, we propose a category-based calibration approach (CCA) using machine learning algorithms for such portable sensors. Compared with traditional methods that often learn a single regression model, CCA includes multiple regression models according to pollutant concentration categories, and builds a more accurate mapping from sensor readings to reference. Furthermore, CCA introduces two fault-tolerance modules: classification tolerance and sample tolerance. The former mitigates the impact of misclassification for concentration category, and the latter improves the robustness of individual regression model. Our approach is evaluated on carbon monoxide (CO) and ozone (O$_{3}$) from two cities of China. The experiment results show that CCA has a better performance than traditional calibration models in both accuracy and robustness.

张克、王娆、崔厚欣、张英俊、李清勇、张玲、俞浩敏、陈泽川

环境污染、环境污染防治

机器学习 空气质量 空气监测传感器 基于类别的校准 容错策略

machine learning air quality air monitoring sensors category-based calibration fault-tolerance strategy.

张克,王娆,崔厚欣,张英俊,李清勇,张玲,俞浩敏,陈泽川.基于类别的鲁棒空气监测传感器校准方法[EB/OL].(2020-03-26)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/202003-295.点此复制

评论