|国家预印本平台
首页|Eigenschemes and the Jordan canonical form

Eigenschemes and the Jordan canonical form

Eigenschemes and the Jordan canonical form

来源:Arxiv_logoArxiv
英文摘要

We study the eigenscheme of a matrix which encodes information about the eigenvectors and generalized eigenvectors of a square matrix. The two main results in this paper are this decomposition encodes the numeric data of the Jordan canonical form of the matrix. We also describe how the eigenscheme can be interpreted as the zero locus of a global section of the tangent bundle on projective space. This interpretation allows one to see eigenvectors and generalized eigenvectors of matrices from an alternative viewpoint.

Chris Peterson、Hirotachi Abo、Thomas Kahle、David Eklund

10.1016/j.laa.2015.12.030

数学

Chris Peterson,Hirotachi Abo,Thomas Kahle,David Eklund.Eigenschemes and the Jordan canonical form[EB/OL].(2015-06-27)[2025-08-23].https://arxiv.org/abs/1506.08257.点此复制

评论