基于SSA-XGBoost模型的高精度密度预测方法研究
Study on the Prediction of High-precision Density Based On the SSA-XGBoost Model
复杂岩性井段对密度测井数据精度要求很高,传统的计算模型不能很好的满足此时的高精度要求。为此提出利用机器学习回归预测模型提高密度测井曲线的精度,考虑到XGBoost模型的过拟合问题,基于SSA算法改进XGBoost进而提出了SSA-XGBoost密度预测模型。采用蒙特卡罗模拟双探测器密度测井仪器,获取不同密度地层数据以验证该模型的预测效果。利用SSA算法优化SVR、RFR和LSTM参数,构建SSA-SVR、SSA-RFR和SSA-LSTM模型预测模拟地层密度,并使用量化评价指标和泰勒图模型对比分析各个模型的预测性能。此外,还分析了不同预测模型对实际密度测井数据的预测效果。结果表明SSA-XGBoost模型的预测精度高于传统脊-肋图模型,在实际密度测井数据处理中具有广阔的应用前景。
bstract [Background]: Complex lithology well sections require high precision in density logging data, and traditional computational models cannot adequately meet the high precision requirements in these cases. [Purpose]: This study aims to improve the precision of density logging curves using machine learning regression prediction models. [Method]: Firstly, SSA algorithm was used to improve XGBoost, leading to the development of the SSA-XGBoost density prediction model. Then, Monte Carlo N-Particle transport codeMCNP of dual-detector density logging tool instrument was used to obtain stratigraphic data of different densities to validate the predictive effectiveness of the model. By optimizing the parameters of SVR, RFR, and LSTM using the SSA, the SSA-SVR, SSA-RFR, and SSA-LSTM models were constructed to predict the simulated formation density. The predictive performance of each model was compared and analyzed using quantitative evaluation metrics and Taylor diagram models. Finally, the performance of different prediction models on actual density logging data was analyzed. [Result]: In the comparative analysis and processing of actual well density logging data with various models, the SSA-XGBoost model showed smaller errors between predicted and actual density, demonstrating high density accuracy and validating the precision of the method. [Conclusion]: The SSA-XGBoost model demonstrates higher predictive accuracy than traditional spine-ribs plot, showing great potential for applications in the processing of actual density logging data.
吴文圣、李瑞
钻井工程石油天然气地质、石油天然气勘探矿山地质、矿山测量
SSA-XGBoost蒙特卡罗模拟机器学习密度预测
SSA-XGBoostMonte Carlo simulationMachine learningensity prediction
吴文圣,李瑞.基于SSA-XGBoost模型的高精度密度预测方法研究[EB/OL].(2024-04-25)[2025-08-02].https://chinaxiv.org/abs/202404.00406.点此复制
评论