R^4中双调和映射热流的正则性准则
Regularity criterion to the biharmonic map heat flow in \\\\\\\\\\\\\\\\mathbb{R}^4
我们考虑了从R^4到光滑紧致无边流形N的双调和映射热流的正则性问题的临界条件。在不假设小初始能量的情形下, 用Gagliardo-Nirenberg 和精细估计得到了双调和映射热流的光滑解的Serrin型正则性准则。我们的结果改进了T. Leman 在 [2]和[3]中的结果, 也将A. Chang, L. Wang, P. Yang([5]), P. Strzelecki([6])和C. Wang([7, 8])推广到非定常情形。
We consider the regularity problem under the critical condition to the biharmonic map heat flow from $\\\\mathbb{R}^{4}$ to a smooth compact Riemannian manifold without boundary. Using Gagliardo-Nirenberg inequalities and delicate estimates, the Serrin type regularity criterion for the smooth solutions of biharmonic map heat flow is obtained without assuming a smallness condition on the initial energy. Our result improved the results of T. Leman in [2] and [3] and generalized the results of A. Chang, L. Wang, P.Yang([5]), P. Strzelecki([6]) and C. Wang([7, 8]) to non-stationary case.
高洪俊、樊继山
数学
双调和映射热流正则性准则
biharmonic mapsheat flowregularity criteria
高洪俊,樊继山.R^4中双调和映射热流的正则性准则[EB/OL].(2009-01-21)[2025-07-18].http://www.paper.edu.cn/releasepaper/content/200901-968.点此复制
评论