|国家预印本平台
首页|基于隐马尔可夫模型的居民用电量预测

基于隐马尔可夫模型的居民用电量预测

Prediction of Electricity Consumption of Resident with Hidden Markov Model

中文摘要英文摘要

电力负荷预测是电力系统规划与运行的基础,是电力市场运作中的重要组成部分,而居民的生活用电是今后一个时期电力市场中最有潜力的增长点之一。本文基于隐马尔可夫模型结合K-Means聚类算法提出了一种新的电力负荷预测方法。在此基础上,选取了北京市1978-2012年的居民生活用电量数据,对北京市居民生活用电量进行了实证分析,论述分析了北京市居民生活用电的现状及特点,并且预测了未来几年北京市居民的生活用电量。通过对比一般的线性回归模型发现该预测方法具有一定的有效性和可行性。

Power load forecasting is the basis of power system planning and it is also an important part of the electricity market, while electricity consumption of the residents is a most potential growth point of the electricity market in the coming period. Based on Hidden Markov model and combining K-Means clustering algorithm, a new electricity load forecasting method is proposed. The data of Beijing residential electricity consumption from 1978 to 2012 is chosen to make an empirical analysis on the basis. The status quo and characteristics of the Beijing residential electricity consumption is discussed and a prediction of electricity consumption is made in the next few years. Comparing with the general linear regression model, the new prediction method based on hidden Markov model is more effective and feasible.

何凤霞、黄敬峰

电气化、电能应用

随机过程负荷预测居民生活用电量隐马尔可夫模型

Stochastic progressLoad forecastingResidential electricity consumptionHidden Markov model

何凤霞,黄敬峰.基于隐马尔可夫模型的居民用电量预测[EB/OL].(2016-03-25)[2025-08-22].http://www.paper.edu.cn/releasepaper/content/201603-363.点此复制

评论