|国家预印本平台
首页|分类规则挖掘算法研究与应用

分类规则挖掘算法研究与应用

Research on the Minning Alogorithm of Classification Rules Minning

中文摘要英文摘要

本文提出一种多支持率分类规则挖掘算法MSC,采用分类频繁模式树组织频繁模式集、应用数组表示模式支持子集,并采用多支持率进行分类挖掘。MSC以深度优先搜索为主,辅以宽度优先搜索,采用了虚拟投影技术,其特点是不必反复扫描数据库和构造模式支持集,算法存储开销低、计算时间少、投影效率高、可伸缩性好。MSC可应用到零售业的货篮分析、消费行为和商品关联规则挖掘等,支持商品分组布局、购买推荐和促销分析。

he paper presents an algorithm MSC of multi-support classification, which adopts the frequent classification item-set tree to organize the frequent pattern sets, and array to figure the classification projected transaction subsets, and applies multiple supports for classification rules mining. The MSC uses the breath first strategy assisted by the depth first strategy, and adopts pseudo projection, which makes it unnecessary to scan the database and construct the projected transaction subsets repeatedly. This reduces the memory and time cost, and makes it more projecting-efficient and scalable. The MSC algorithm can be used in the basket analysis, consumption behavior and the association rules mining in the retailing industry, which support the product layout, buying recommendation and the efficiency of sales promotion.

谷蓉、王蓓、琚春华

计算技术、计算机技术

频繁模式关联规则挖掘分类规则

frequent pattern association rules mining multi-support classification rule

谷蓉,王蓓,琚春华.分类规则挖掘算法研究与应用[EB/OL].(2009-02-10)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/200902-295.点此复制

评论