Illuminating Elite Patches of Chemical Space
Illuminating Elite Patches of Chemical Space
In the past few years, there has been considerable activity in both academic and industrial research to develop innovative machine learning approaches to locate novel, high-performing molecules in chemical space. Here we describe a new and fundamentally different type of approach that provides a holistic overview of how high-performing molecules are distributed throughout a search space. Based on an open-source, graph-based implementation [Jensen, Chem. Sci., 2019, 12, 3567-3572] of a traditional genetic algorithm for molecular optimisation, and influenced by state-of-the-art concepts from soft robot design [Mouret et al., IEEE Trans. Evolut. Comput., 2016, 22, 623-630], we provide an algorithm that (i) produces a large diversity of high-performing, yet qualitatively different molecules, (ii) illuminates the distribution of optimal solutions, and (iii) improves search efficiency compared to both machine learning and traditional genetic algorithm approaches.
Jonas Verhellen、Jeriek Van den Abeele
Jonas VerhellenJeriek Van den Abeele
化学计算技术、计算机技术自动化基础理论
genetic algorithmChemical space
Jonas Verhellen,Jeriek Van den Abeele.Illuminating Elite Patches of Chemical Space[EB/OL].(2020-07-06)[2025-06-24].https://chemrxiv.org/engage/chemrxiv/article-details/60c74d454c89193558ad37b8.点此复制
评论