非光滑系数抛物方程弱解的边界唯一延拓性
he Boundary Unique Continuations for the Weak Solutions of Parabolic Equations
本论文对如下带奇异位势的非光滑系数抛物方程进行了讨论, $$u_t(x,t)-mathrm{div}(A(x)nabla u(x,t))+V(x)u(x,t)=0,(x,t)inOmegatimes(0,T),$$ 其中系数矩阵$A(x)$满足一致椭圆条件和 Dini连续,位势函数$V(x)$满足Kato条件.建立了上述抛物方程弱解$u(x,t)$在边界上的双倍测度性质和边界唯一延拓性
his paper investigates the following parabolic equation: $$u_t(x,t)-mathrm{div}(A(x)nabla u(x,t))+V(x)u(x,t)=0,(x,t) in Omega times(0,T),$$ with non-smoothness conefficients and singular potentals ,were $A(x)$ satisfies elliptic condition and $V(x)$ is a Kato potential.The boundary doubling properties and the boundary unique continuation theorems for the weak solution $u$ have been derived.
陶祥兴、吴建伟
数学
抛物方程 Kato位势 一致椭圆条件 双倍性质 唯一延拓性
Parabolic equationKato potential Elliptic conditionDoubing propertyUnique continuation
陶祥兴,吴建伟.非光滑系数抛物方程弱解的边界唯一延拓性[EB/OL].(2008-05-15)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200805-404.点此复制
评论