基于网络搜索数据的社会消费品预测研究
Research on prediction of total retail sales of social consumer goods based on network search data
随着互联网的快速发展,网络搜索数据逐渐成为经济预测的重要数据来源。本文基于网络搜索数据对我国社会消费品零售总额进行预测探究,在斯皮尔曼相关系数挑选出合适的网络搜索数据与传统政府数据的基础上,通过主成分分析降维处理,将网络搜索数据与传统政府数据分别作为神经网络的输入变量来预测我国社会消费品零售总额。结果表明,相较于单独使用政府数据和网络搜索数据模型,将政府数据与网络搜索数据相结合的模型预测效果最好。对模型结果进行分析旨在为网络搜索数据运用到经济社会类预测问题提供一定参考。
With the rapid development of Internet, network search data has gradually become an important data source of economic prediction. Based on the network search data, this paper forecasts the total retail sales of social consumer goods. On the basis of selecting the appropriate network search data and traditional government data by Spearman correlation coefficient, through PCA dimensionality reduction processing, the network search data and traditional government data are used as the input variables of neural Research on prediction of total retail sales of social consumer goods based on network search datanetwork model to predict the total retail sales of social consumer goods in China. The results show that the model combining government data and network search data has the best prediction effect compared with the model using government data and network search data alone. The analysis of the model results aims to provide some reference for government departments to formulate policies to stimulate domestic demand.
伍银艳、李小红
贸易经济信息产业经济经济计划、经济管理
互联网网络搜索数据BP神经网络社会消费零售总额预测PCA
Internetnetwork search dataBP neural networktotal retail sales forecast of social consumptionPCA
伍银艳,李小红.基于网络搜索数据的社会消费品预测研究[EB/OL].(2022-02-18)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202202-22.点此复制
评论