基于EMD和混沌神经网络的月平均温度预测方法研究
Study of mean monthly temperature prediction method based on EMD and chaotic neural network
为提高月平均温度预测的准确率,针对月平均温度时间序列具有非线性、非平稳的特征,提出将经验模态分解(EMD)、相空间重构理论和神经网络相结合的时间序列预测模型。运用EMD将月平均温度时间序列分解为多个本征模态函数(IMF)分量和趋势分量,降低被测信号的非平稳性,应用混沌理论,对每个分量选择合适的时间延迟和嵌入维数,进行相空间重构,采用BP神经网络对其进行建模预测,再将预测结果叠加。利用该方法对南京市月平均温度进行预测,实验结果表明,该方法能够准确反映月平均温度时间序列的变化趋势,具有更高的预测精度。
o improve the accuracy of the mean monthly temperature prediction, and in view of the mean monthly temperature time series has nonlinear and non-stationary characteristics, the forecasting models for the mean monthly temperature were brought forward integrating empirical mode decomposition(EMD), the phase space reconstruction theory and neural network. Firstly, using the EMD theory,the mean monthly temperature time series is decomposed into several intrinsic mode function (IMF) components and a trend component, reducing the non-stationary in the signals. Then, using chaos theory, select the appropriate time delay and embedding dimension for each component, and reconstructs the phase space. By using the BP neural network, the component of decomposition is predicted. Finally the predicted results are added. Using the method to predict mean monthly temperature. The example indicates that the model can accurately reflect the change trend of mean monthly temperature time series,has higher prediction precision.
张颖超、刘玉珠
大气科学(气象学)自动化基础理论
月平均温度预测经验模态分解相空间重构神经网络
mean monthly temperature predictionempirical mode decomposition(EMD)phase space reconstructionneural network
张颖超,刘玉珠.基于EMD和混沌神经网络的月平均温度预测方法研究[EB/OL].(2013-05-03)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/201305-58.点此复制
评论