无线网络中基于深度强化学习的内容缓存算法
eep Reinforcement Learning Based Content Caching in Wireless Networks
内容缓存是无线网络中进行内容管理的一种重要技术手段,本文研究了无线网络中基于深度强化学习的内容缓存算法。首先,本文以内容传输总成本最小化为目标,提出了最小化内容传输时延和链路负载的优化问题。其次,本文针对所提优化问题提出了一种基于深度强化学习的内容缓存和交付实时优化算法,该算法可以在每个决策阶段逼近最优解。最后,通过仿真结果对本文所提优化算法的性能进行了评估,结果表明,本文所提出的优化算法比传统的内容缓存方案具有更好的性能。
ontent caching is considered as an integral part of content management in wireless networks. In this paper, we studied the Deep Reinforcement Learning (DRL) based content caching scheme in wireless networks. First, an optimization problem that aims to minimize the total cost of content delivery is formulated. Second, a DRL-based algorithm is proposed to implement real time management of content caching and delivery, which can approach the optimal solution without iterations during each decision epoch. Finally, the simulation results are provided to evaluate the performance of our proposed scheme, which show that it can achieve lower cost than the existing content caching schemes.
高慧慧、赵中原
无线通信通信计算技术、计算机技术
无线网络内容缓存深度强化学习资源分配
wireless networkscontent cachingdeep reinforcement learningresource management
高慧慧,赵中原.无线网络中基于深度强化学习的内容缓存算法[EB/OL].(2020-12-30)[2025-08-05].http://www.paper.edu.cn/releasepaper/content/202012-116.点此复制
评论