|国家预印本平台
首页|基于RGB-D图像进行遮挡处理和恢复的目标跟踪方法

基于RGB-D图像进行遮挡处理和恢复的目标跟踪方法

Object Tracking using RGB-D Images with Occlusion Handling and Recovery

中文摘要英文摘要

对象跟踪一直是计算机视觉领域的一个具有挑战性的问题。大多数传统的跟踪方法只将彩色图像用于这个问题,而这可能会遭受到不断变化的环境,如光照变化、部分遮挡和背景杂波,导致所谓模型的漂移问题。深度图像包含空间信息,深度图像编码这些问题的重要线索。在本文中,我们利用微软的Kinect得到的深度图像来改善传统的跟踪方法。首先,我们采用从彩色和深度域中提取harr-like特征与朴素贝叶斯分类器来减少漂移模型。其次,为了处理遮挡问题,我们利用深度直方图来决定是否阻塞发生。第三,为了从严重遮挡中恢复,我们设计一个检测模块来搜寻遮挡目标并使用基于深度的分割来找到目标。我们在普林斯顿RGBD跟踪数据集中进行实验,结果证明了该方法的有效性,尤其是在遮挡条件下。

Object tracking has always been a challenging problem in the ?eld of computer vision. Most previous works used only the color images for this problem, which may suffer from changing environments, such as illumination variations, partial occlusion and background clutters, resulting in the so-called model drift problem. As depth images contain spatial information, depth images encode important clues for these problems. In this paper, we utilize depth images, which are provided by the Microsoft Kinect, to improve the traditional tracking methods. Firstly, we adopt the harr-like features extracted from both the color and depth domains with a naive Bayesian classi?er to reduce model drift. Secondly, to handle the occlusion problem, we utilize the depth histogram to decide whether occlusion occurs. Thirdly, to recover from heavy occlusions, we design a detection module to search for the occluded object and use the depth-based segmentation to ?nd the object. We carry out experiments on the Princeton RGBD tracking dataset, and the results demonstrate the effectiveness of the proposed method, especially under occlusion conditions.

宋砚、丁萍

计算技术、计算机技术电子技术应用

计算机应用技术目标跟踪RGB-D

omputer application technologyobject trackingRGB-D

宋砚,丁萍.基于RGB-D图像进行遮挡处理和恢复的目标跟踪方法[EB/OL].(2016-05-26)[2025-07-22].http://www.paper.edu.cn/releasepaper/content/201605-1258.点此复制

评论