|国家预印本平台
首页|融合重组和先验的显著性目标检测

融合重组和先验的显著性目标检测

Saliency Object Detection: Integrating Reconstruction and Prior

中文摘要英文摘要

本文基于重组和先验两个角度提出一种融合的显著性目标检测方法。首先,对每幅输入图像采用过分割算法进行超像素分割,然后分别经过重组和先验这两个过程生成初始的重组显著图和先验显著图。重组过程包含密度重组和稀疏重组。当目标物体出现在图像边缘时,密度重组能够更准确的检测到显著性目标。而当图像有复杂的背景时,稀疏重组更具鲁棒性,能够有效的抑制背景。为充分利用图像的背景和先验知识,先验过程采用背景先验和中心先验,使融合后得到的初始显著图能够更均匀的突出显著性目标。最后,将重组显著图和先验显著图进行非线性融合形成最终的显著图。该显著图不仅能够均匀的突出显著性目标,而且能够有效的抑制图像背景。本实验是在四个数据库上依据5种评价指标与其它10种流行算法进行比较,实验结果表明本文所提出的算法具有较高的检测性能和运算效率。

saliency object detection approach is proposed via integrating reconstruction and prior knowledge. This paper first segments each image into superpixels using over-segmentation algorithm. And then the reconstruction saliency map and prior saliency map are generated by reconstruction and prior, respectively. The reconstruction involves dense reconstruction and sparse reconstruction. When the saliency object appears on the image boundaries, the detection can be more accurate via dense reconstruction. In addition, if there is complex background in natural scene image, the sparse reconstruction can be more robust and suppress the background effectively. The prior adopts background prior and center prior, which can highlight the saliency object uniformly. The reconstruction saliency map and prior saliency map are nonlinearly integrated to generate the final saliency map. The proposed method is compared with the other 10 state-of-the-art algorithms based on 5 evaluation metrics. The experimental results demonstrate that the proposed algorithm has high detection performance and low elapsing time.

赵迪、李翠萍、陈振学

计算技术、计算机技术

重组先验融合过分割显著性

ReconstructionPriorIntegrationOver-segmentationSaliency

赵迪,李翠萍,陈振学.融合重组和先验的显著性目标检测[EB/OL].(2017-06-23)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/201706-252.点此复制

评论