|国家预印本平台
首页|有关稠密矩阵的量子牛顿法

有关稠密矩阵的量子牛顿法

Quantum gradient descent for dense matrices

中文摘要英文摘要

优化算法是机器学习的一项重要技术,直接影响神经网络的收敛速度和精度。优化问题通常采用迭代法求解,梯度下降法是无约束优化问题中最常用的方法。近年来,学者们已经开始关注量子梯度下降法和量子牛顿法,并致力于将其应用到解决经典优化问题上。但现有的量子算法对矩阵的稀疏性要求较高。文章介绍了一种基于稠密矩阵的量子牛顿法算法。将稠密矩阵的哈密顿模拟以及傅里叶逼近相结合,运用到量子牛顿法中,为稠密矩阵在量子计算机上的优化算法提供一个新的思路。

Optimization algorithm is an important technology for machine learning, which directly affects the convergence speed and accuracy of neural network.Optimization problems are usually solved by iterative method, and gradient descent method is the most commonly used method for unconstrained optimization.The quantum gradient descent method has been used to solve the optimization problems, but it has high requirements for matrix sparsity.This paper introduces an algorithm of quantum gradient descent method based on dense matrix. The combination of Hamiltonian simulation and Fourier approximation of dense matrices is applied to the quantum Newton method, which provides a new idea for the optimization algorithm of dense matrices on quantum computers.

郭奋卓、白林飞

计算技术、计算机技术自动化基础理论

量子计算优化算法梯度下降法

Quantum ComputationOptimization AlgorithmGradient Descent

郭奋卓,白林飞.有关稠密矩阵的量子牛顿法[EB/OL].(2022-03-15)[2025-06-22].http://www.paper.edu.cn/releasepaper/content/202203-179.点此复制

评论