|国家预印本平台
首页|基于大规模复杂网络社区发现的科研合著网络分析

基于大规模复杂网络社区发现的科研合著网络分析

Scientific Co-authorship Network Analysis Based on Community Detection in Large-Scale Complex Network

中文摘要英文摘要

针对基于极大团的社区发现算法,设计适应大规模数据的MapReduce并行计算框架,提出基于大规模复杂网络社区发现的科研合著网络分析算法,并用于对我国管理科学与工程领域2012年的科研合著网络进行社区结构划分。实验结果表明,基于MapReduce的并行社区发现算法在保证正确性的同时能够有效地提高计算效率,适用于大规模复杂网络的社区发现,针对我国管理科学与工程领域2012年科研合著网络的社区划分结果展现了我国管理科学与工程领域科研合作的特点和问题。

In this paper, we design a parallel computing framework using MapReduce and present a scientific co-authorship network analytical algorithm by detecting commutities in large-scale complex network with reference to the community detection algorithm based on maximum clique. Then we use the proposed algorithm to detect the community structure of domestic scientific co-authorship network in the field of management science and engineering in 2012. Experimental results show that the parallel community detection algorithm based on MapReduce can not only ensure the correctness but also improve the efficiency of the computation. Thus, this algorithm can be used to detect community structure in large-scale complex network. The community structure detection results of domestic scientific co-authorship network in the field of management science and engineering in 2012 illustrate the features and problems of domestic scientific collaboration in the field.

冯小东、卢丹、杜彦南、武森

科学、科学研究计算技术、计算机技术经济计划、经济管理

科研合著网络社区发现MapReduce

scientific co-authorship networkcommunity detectionMapReduce

冯小东,卢丹,杜彦南,武森.基于大规模复杂网络社区发现的科研合著网络分析[EB/OL].(2014-01-03)[2025-06-06].http://www.paper.edu.cn/releasepaper/content/201401-162.点此复制

评论