|国家预印本平台
首页|基于模糊粗糙集的SVM污水处理过程故障诊断研究

基于模糊粗糙集的SVM污水处理过程故障诊断研究

he Application of fault diagnosis method based fuzzy-rough set and SVM in WWTP

中文摘要英文摘要

污水处理过程是个典型的多变量、非线性、具有强外部干扰的复杂工业过程,因此,如何进行污水处理工艺过程的故障诊断成为一个有意义的研究课题。本文结合了基于模糊粗糙集的属性选择方法及支持向量机分类机理, 提出了一种新的故障诊断方法。首先使用基于粗糙集的属性选择(FRFS)方法对过程特征变量进行约简, 去除数据中的噪声, 并降低过程数据的维数, 获得具有代表性的过程特征信息,同时充分利用SVM的良好推广性能,提高了预测分类精度。最后将改故障诊断方法应用于广州沥滘污水处理厂,仿真结果表明了该方法的优越性。

he fault diagnosis on a waste water treatment process is a hard and complex problem. A fault diagnosis method was developed based on attribute selection with fuzzy-rough set (RSFS) and principle of support vector machine (SVM) classification. RSFS method is first used to reduce the redundant information and noise in the data. Meanwhile, SVM increases classification accuracy with good generalization performance. The resulting features are used to t rain a support vector classifier by solving a quadratic programming problem. Test results for fault detection in a real Wastewater Treatment Plan in Guangzhou show that the method has satisfactory accuracy.

许玉格、陈应豪、罗飞、余仁辉

废物处理、废物综合利用环境污染、环境污染防治

污水处理故障诊断特征选择模糊粗糙集支持向量机

Wastewater treatmentFault detectionFeature selectionFuzzy-rough setSVM

许玉格,陈应豪,罗飞,余仁辉.基于模糊粗糙集的SVM污水处理过程故障诊断研究[EB/OL].(2009-09-29)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/200909-804.点此复制

评论