|国家预印本平台
首页|一种基于多个特征重要性感知的对抗攻击算法

一种基于多个特征重要性感知的对抗攻击算法

n Adversarial Attack Algorithm Based on Multiple Feature Importance Awareness

中文摘要英文摘要

随着深度神经网络技术的广泛应用,深度神经网络安全问题也逐渐引起人们关注。虽然深度神经网络在计算机视觉领域中表现出十分出色的性能,但研究显示该技术会受到对抗样本的攻击。迁移性使对抗样本具有黑盒攻击能力,这便于在现实场景中对目标模型进行对抗攻击。为了使对抗样本有更高的迁移性,本文提出了一种基于多个特征重要性感知的对抗攻击算法。攻击的想法是通过建立原始图像和对抗样本的特征重要性感知来选择性地破坏图像的中间层特征,在生成特征重要性感知的过程中增加图像多样化,可以有效避免特定于源模型的特征。最后本文通过对比实验,验证了攻击在对抗样本迁移方面的有效性。

With the wide application of deep neural network technology, the security of deep neural networks has gradually attracted people\'s attention. Although deep neural networks have shown impressive performance in the field of computer vision, studies have shown that the technique is vulnerable to adversarial examples. The transferability enables adversarial examples to have black-box attack capabilities, which facilitates adversarial attacks on target models in real-world scenarios. In order to make the adversarial examples more transferable, this paper proposes an adversarial attack algorithm based on multiple feature importance awareness. The idea of the attack is to selectively destroy the middle layer features of the image by establishing the feature importance awareness of the original image and the adversarial example, increasing the image diversity in the process of generating the feature importance awareness can effectively avoid the source model-specific features . Finally, this paper verifies the effectiveness of the attack in adversarial examplestransferability through comparative experiments.

郑一明、谷利泽

计算技术、计算机技术

人工智能深度神经网络图像识别对抗攻击

artificial intelligencedeep neural networkimage recognitionadversarial attack

郑一明,谷利泽.一种基于多个特征重要性感知的对抗攻击算法[EB/OL].(2023-02-02)[2025-08-06].http://www.paper.edu.cn/releasepaper/content/202302-16.点此复制

评论