|国家预印本平台
首页|基于自动机器学习的航天测控网频谱识别方法

基于自动机器学习的航天测控网频谱识别方法

Spectrum Recognition Method for Space TT&C Network Based on Automatic Machine Learning

中文摘要英文摘要

为实现航天测控网的频谱资源的合理分配,首先要对其频谱识别有较高的准确率。本文以航天测控系统的典型信道模型Loo模型和Corazza模型的功率谱密度采样数据作为输入数据源,利用自动机器学习技术,阐述不同的神经架构搜索的算法,并通过遗传算法、梯度下降、贝叶斯优化三种搜索策略分别对输入数据进行训练,获得其频谱识别的准确率并比较分析。实验结果可知,三种算法各有优劣,其中贝叶斯优化方法可以通过较少的迭代次数获得较高的频谱识别准确率。

In order to realize the reasonable allocation of spectrum resources in the space TT&C network, the first step is to have a high accuracy rate for its spectrum identification. In this paper, the power spectral density sampling data of Loo model and Corazza model, which are typical channel models of space TT&C system, are used as input data sources. Using automatic machine learning technology, different neural architecture search algorithms are described, and the input data are trained by genetic algorithm, gradient descent and Bayesian optimization respectively, and the accuracy of spectrum recognition is obtained and compared. The experimental results show that the three algorithms have their own advantages and disadvantages, and the Bayesian optimization method can obtain higher spectral recognition accuracy with fewer iterations.

戴广才、张陆勇

航天通信自动化技术、自动化技术设备

人工智能神经架构搜索频谱识别

artificial intelligenceneural architecture searchspectrum recognition

戴广才,张陆勇.基于自动机器学习的航天测控网频谱识别方法[EB/OL].(2023-03-08)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202303-77.点此复制

评论