基于粒子群的模糊C均值聚类算法不同模式的比较
he Comparison of PSO Based FCM in Different Models
本文把标准粒子群优化算法应用于模糊C均值聚类算法中,详尽地比较了异步模式和同步模式聚类效果。首先介绍了相关算法和粒子群算法的两种模式,通过以隶属度对粒子进行编码将标准粒子群算法应用于模糊C均值聚类算法以解决模糊聚类问题。最后通过实验验证了异步模式在一定程度上要优于同步模式,但耗时要大于同步模式,为以后粒子群算法在模糊聚类方面的研究打下了基础。
While the particle is encoded by membership, standard particle swarm algorithm (PSO) is applied into fuzzy C-mesns clustering algorithm (FCM), and detailed comparison is given when the algorithm using different models between asynchronous mode and synchronous mode. Firstly, PSO and related algorithms are introduced, then making standard PSO apply to FCM to deal clustering problems while encoded by membership. Finally, asynchronous mode is proved to be more excellent than synchronous mode on a certain extent, except on consuming time by experiments, making a good foundation on the research that PSO in terms of fuzzy clustering.
黄新建
计算技术、计算机技术自动化技术、自动化技术设备
聚类异步模式同步模式粒子群优化算法标准粒子群
lusteringAsynchronous modeSynchronous modeParticle swarm algorithmStandard particle swarm algorithm
黄新建.基于粒子群的模糊C均值聚类算法不同模式的比较[EB/OL].(2011-03-10)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201103-450.点此复制
评论