基于深度学习的指针式仪表自动识别的研究和设计
utomatic Recognition of Dial Instrument Based on Deep Learning
随着科技的不断发展,工业信息化、数字化的不断提升,工业生产中对于传统的指针式仪表进行高效的、精确的数据录入变得尤为重要。针对当前的指针式自动识别系统中存在的识别环境要求苛刻、仪表识别种类单一的问题,本文结合深度学习和计算机视觉的相关技术,研究和改进已有的处理识别算法,通过构建仪表训练数据集并对目标检测模型MASKRCNN进行学习和调整实现对自然场景中的仪表盘进行图像分割和有效信息提取,针对设计的图像特征提取方式,采用Ostu阈值分割法和KNN对仪表数字进行识别、采用概率霍夫直线法对指针进行拟合和定位,采用距离法对最后示数进行判定,从而进一步提升指针式仪表自动识别系统的鲁棒性和泛化性。
With the continuous development of technology and the continuous improvement of industrial informationization and digitization, it is especially important to carry out efficient and accurate data entry for traditional pointer instruments in industrial production. Aiming at the problem of the demanding environment and the single type of instrument recognition in the current automatic recognition system, this paper combines the related techniques of deep learning and computer vision to research and improve the existing process identification algorithm.By constructing the instrument training data set and learning and adjusting the target detection model MASKRCNN to realize the image segmentation and effective information extraction of the instrument panel in the natural scene.According to the design of image feature extraction, this paper use the Ostu threshold segmentation method and KNN to identify the instrument numbers, use the probabilistic Hough line method to fit and locate the pointer, and use the distance method to determine the indication at last in order to improving the robustness and generalization of the pointer type automatic identification system.
伍贵宾、贺嘉琪、熊永平
自动化技术、自动化技术设备计算技术、计算机技术机械仪表工业经济
计算机应用计算机视觉深度学习指针式仪表自动识别
omputer ApplicationComputer VisionDeep LearningDial InstrumentAutomatic Recognition
伍贵宾,贺嘉琪,熊永平.基于深度学习的指针式仪表自动识别的研究和设计[EB/OL].(2018-12-29)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201812-134.点此复制
评论