微平行管道内两层牛顿流体的非定常电渗流动
ransient electroosmotic flow of two-layer Newton fluids through a slit microchannel
运用拉普拉斯变换法,给出了平行微管道间两层电渗流瞬时速度的半解析解。解析求解了线性的Poisson-Boltzmann方程和非定常的柯西动量方程。我们获得了两层流体的速度表达式。另外,通过Laplace逆变换的数值计算法,分析了上层流体与下层流体的粘性比μ、密度比ρ、介电常数比ε、界面处电势差△ψ、界面处电荷密度Q对流体流动的影响。研究表明:随着电势差振幅的增加,速度振幅的变化也增大。随着粘性比的增加,EOF速度振幅减小。较大的介电常数比将导致较大的速度。较大的密度比将导致较小的速度,但总的说来影响不大。
Using Laplace transform method, semi-analytical solutions are presented for transient Electroosmotic flow of two-layer fluids between micro-parallel plates. The solution involves solving the linearized Poisson-Boltzmann equation, together with the unsteady Cauchy momentum equation. The velocity expressions of these two layers were obtained respectively. By numerical computations of inverse Laplace transform, the influence of viscosity ratio μ, density ratio ρ, dielectric constant ratio ε of layer II to layer I, interface charge density jump Q and interface zeta potential△ψdifference on transient velocity amplitude is presented. In addition, the velocity amplitude becomes large with the interface zeta potential difference under steady status. The velocity amplitude becomes small with the increase of the viscosity under steady status. Larger dielectric constant ratio leads to larger velocity under steady status. The density ratio has little effect on the EOF velocity.
苏洁、何国威、刘全生、长龙、菅永军
物理学数学力学
流体力学微平行管道EDL非定常EOF两层牛顿流体
hydromechanicsmicro-parallel platesEDLunsteady EOFtwo-layer Newton fluids
苏洁,何国威,刘全生,长龙,菅永军.微平行管道内两层牛顿流体的非定常电渗流动[EB/OL].(2012-09-06)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/201209-53.点此复制
评论