增量k-Median算法的研究与实现
Research and implementation of incremental k-Median algorithm
论文针对聚类分析在动态数据方面的应用,对增量k-Median问题进行了深入研究。文中首先研究了无容量限制的增量设备选址问题,并在数据点的邻域与潜力值两个概念的基础上给出了解决方案,实现了解决增量设备选址问题的IFL算法。论文以IFL算法为基础并通过中途进行聚类合并操作解决了增量k-Median问题,实现了相应的IM(k)算法。最后通过对IM(k)算法进行仿真并将其与其他聚类算法进行对比测试,证明了该算法适用于处理大容量数据集的增量问题,同时发现了它们的缺点与不足,并提出了改进的方向。
he paper focuses on the application of dynamic data clustering analysis, and then it makes a deep research. The paper first discusses the uncapacitated incremental facility location problem, and based on the concepts of neighborhood and potential it gives a reasonable solution and implements the IFL algorithm. Based on the IFL algorithm the paper solves the incremental k-Median problem through merging clusters halfway, and implements the IM(k) algorithm. At last, through simulating the IM(k) algorithm and doing a comparison test among the algorithm and other clustering algorithms, we prove that the IM(k) algorithms can deal with large datasets in the incremental problem, find its shortages and present its improvement direction.
卢美莲、张泽
计算技术、计算机技术
聚类分析增量设备选址增量k-Median
clustering analysisincremental facility locationincremental k-Median
卢美莲,张泽.增量k-Median算法的研究与实现[EB/OL].(2012-12-24)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201212-728.点此复制
评论