|国家预印本平台
首页|Linear-Quadratic Optimal Control for Backward Stochastic Differential Equations with Random Coefficients

Linear-Quadratic Optimal Control for Backward Stochastic Differential Equations with Random Coefficients

Linear-Quadratic Optimal Control for Backward Stochastic Differential Equations with Random Coefficients

来源:Arxiv_logoArxiv
英文摘要

This paper is concerned with a linear-quadratic (LQ, for short) optimal control problem for backward stochastic differential equations (BSDEs, for short), where the coefficients of the backward control system and the weighting matrices in the cost functional are allowed to be random. By a variational method, the optimality system, which is a coupled linear forward-backward stochastic differential equation (FBSDE, for short), is derived, and by a Hilbert space method, the unique solvability of the optimality system is obtained. In order to construct the optimal control, a new stochastic Riccati-type equation is introduced. It is proved that an adapted solution (possibly non-unique) to the Riccati equation exists and decouples the optimality system. With this solution, the optimal control is obtained in an explicit way.

Hanxiao Wang、Jingrui Sun

数学

Hanxiao Wang,Jingrui Sun.Linear-Quadratic Optimal Control for Backward Stochastic Differential Equations with Random Coefficients[EB/OL].(2019-12-28)[2025-08-11].https://arxiv.org/abs/1912.12439.点此复制

评论