基于自注意力的无配对图像翻译方法研究
Unpaired Image to Image Translation Methods Based on Self-Attention
本文针对当前无配对图像翻译方法存在的生成结构优化问题提出了一种新的基于自注意力的无配对图像翻译方法,该方法利用多头自注意力模块和卷积神经网络结合的方式增强算法对图像全局特征的表达能力,并通过通道激励模块来增强多头自注意力对全局通道信息的提取能力。此外,本文提出了一种新的对比损失约束,通过全局和局部两个角度约束生成图像与原图像的内容一致性。最后,该方法在多个公开数据集上进行了实验,试验结果表明,相比于基准方法,本方法能有效地提升图像翻译的结果,增强翻译后图像的真实性。
In this paper, a new self-attention-based unpaired image translation method is proposed to solve the generation structure optimization problem existing in current unpaired image translation methods. This method combines multi-head self-attention module and convolutional neural network to enhance the expression ability of the algorithm for global image features. Channel excitation module is used to enhance the ability of multi-head self-attention extracting global channel information. In addition, a new contrast loss constraint is proposed in this paper to ensure the content consistency between the generated image and the original in global and local aspects. Finally, the proposed method is tested on several public data sets, and the experimental results show that the proposed method can effectively improve the image translation results and enhance the authenticity after translation compared with the benchmark method.
罗娟娟、杜明欣、吴子逸
计算技术、计算机技术
人工智能图像翻译生成对抗网络自注意力对比学习。?????
artificial intelligenceimage to image translationgenerate adversarial networkself-attentioncontrastive learning.?????
罗娟娟,杜明欣,吴子逸.基于自注意力的无配对图像翻译方法研究[EB/OL].(2023-12-12)[2025-05-04].http://www.paper.edu.cn/releasepaper/content/202312-22.点此复制
评论